If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x=36
We move all terms to the left:
2x^2+10x-(36)=0
a = 2; b = 10; c = -36;
Δ = b2-4ac
Δ = 102-4·2·(-36)
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{97}}{2*2}=\frac{-10-2\sqrt{97}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{97}}{2*2}=\frac{-10+2\sqrt{97}}{4} $
| 3x-2+2x-1=4x-x+8 | | -3(w+5)=4w-5 | | -6=-5p+3p | | x+x+20=20 | | 22p-11=4p-7 | | 2x-3x=28-4 | | -59-11x=34-14x | | 14.95+89x=152.01 | | S=6n+2 | | 9x+3x-10=3(3x+1x) | | -4/9n-8+1/3n=7 | | -5x17=35 | | b/10=-3 | | 3+5x=7=70 | | 16x-18=-5x+24 | | 225=-5(-7x-10) | | -21-10x=15-11x | | x/8-10=11/16 | | -9x-113=85-15x | | 7/3y-10=-3 | | W=7x+29 | | 18=12y | | -4/5x-12=0 | | -7v=-35 | | 122=-v+196 | | -73-7x=-11x+47 | | 4x=7x27 | | 15^2x=36 | | 4m9+13-1m=4 | | 24/1/3+48=x | | -x+7x=-6 | | -3+12=m-6 |